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Abstract

The study of substellar objects is a rapidly growing field. Since the 1995 discovery of the first
brown dwarf and the first extrasolar giant planet—around a main sequence star—, hundreds of these
substellar objects have been detected, providing fascinating information to test evolutionary and for-
mation models. The recent great advances in the quality of the observations provide valuable ingights,
and inspire the development of more realistic and detailed models of the physical processes that gov-
ern these objects. Substellar objects are mostly fully convective and have molecular atm ospheres with
complex chemical processes. As the dominant energy transport mechanism, convection determines the
temperature structure of these objects. Additionally, temperature and dengity anomalies associated with
convection generate up-tlows and down-flows of material that are responsible for transporting the vari-
ous chemical species between different layers. These complex and inherently 3D convective dynamics
cannot be completely described by the widely used 1D mixing length theory (MLT) approximation,
requiring the use of arbitrary parametrizations. 3D radiative-hydrodynamic simulations of solar con-
vection have become a valuable tool to study the convective dynamics, and its results are in very good
agreement with solar observations. In recent years, cooler objects have been studied using 3D simula-
tions, with a special focus on the effect of convection on the M-dwarf spectral lines. This work is a first
step in the development of areliable numerical tool that is capable of simulating convection in 3D for
substellar objects, and focuses on the convective dynamics in combination with the equation of state.

For that purpose, we coupled and tested a sophisticated equation of state (ACES-EOS) to the hy-
drodynamic FLASH code that includes chemical processes such as molecule formation and handles
temperatures as low as 100K. However, before we could use the “FLASH+ACES-EOQS” code in the
substellar regime, we needed to test it against other existing 3D simulations and chose an M-dwarf—
cold and dense enough for molecules to play a significant role—for which 3D models exist. In this
M-dwarf test simulation using the “FL ASH+ACES-EOS” code, we found granule-like structures with
warmer and less dense regions moving upwards and colder denser regions moving downwards. The
“FLASH+ACES-EQS” temperature, density and pressure altitude-mean-profiles are in very good agree-
ment with PHOENIX/1D models and the rms z-velocity values of around 0. 2km/s are similar to those
obtained by previous studies. All these results indicate that convection iz correctly simulated by the
FLASH code coupled to the ACES-EOS. With this validation process completed, it is possible in future
work to perform simulations of objects with lower temperatures and lower masses.






Abstract

Dasz Studium substellarer Objekte ist ein schnell wachsendes Feld. Seit 1995 und der Entdeck-
ung des ersten braunen Zwerges und des ersten extrasolaren Gasriesen -um einen Hauptreihenstern-
wurden hunderte substellare Objekte nachgewiesen, die fagzinierende Informationen zum Testen von
Evolutions- und Bildungsmodellen liefem. Die gegenwirtig schnell voranschreitende Qualitit von
Beobachtungen erbringen wertvolle Erkenntnisse und inspirieren zur Entwicklung zunehmend realistis-
cher und detaillierter Modelle all der bedeutenden physikalischen Prozesse dieser Objekte. Substellare
Objekte sind hanfig vollkonvektiv und verfiigen tiber molekulare Atmospharen mit komplexen chemis-
chen Prozessen. Als dominanter Energietransportmechanismus, bestimmt Konvektion iiber die Temper-
aturstruktur dieser Objekte. Zusétzlich bewirken konvektionsbedingte Temperatur- und Dichteanoma-
lien auf- und abwirtsgerichtete Materialstrémungen, welche verantwortlich fiir den Transport chemis-
cher Spezies zwischen den verschiedenen Atmosphérenschichten sind. Die komplizierte Dynamik der
natiirlichen dreidimensionalen Konvektion kann nicht vollstandig durch die weitverbreitete Approxim a-
tion der 1D Mischungswegtheorie beschrieben ohne zuséitzliche, willkiirliche Parametrisierung. Ex-
istierende lokale 3D Strahlungs-/Hydrodynamiksimulationen von solarer Konvektion gind zu einem
wertvollem Hilfsmittel zum Studium konvektiver Dynamik geworden, wobei deren Ergebnisse gut mit
Sonnenbeobachtungen {ibereinstinmen. In den letzten Jahren wurden zunehmend kithlere Objekte mit-
tels 3D-Simulationen studiert, mit besonderer Ausrichtung auf deren Auswirkung auf M-Zwerg Spek-
trallinien. Diese Arbeit stellt einen ersten Schritt in der Entwicklung eines zuverlissigen, numerischen
Werkzeugs dar, das in der Lage sein wird, dreidimensionale Konvektion in substellaren Objekte zu
simulieren, und konzentriert sich konvektiver Dynamik in Verbindung mit der Zustandsgleichung.

Aug diesem Grund, haben wir eine moderne Zustandsgleichung (ACES-EOS) in den Hydrodynamik-
Code FLASH integriert und getestet, welche chemische Prozesse wie Molekiilbildung beinhaltet und
fiir Temperaturen bis herunter zu 100K anwendbar ist. Dennoch, bevor der "FLASH+ACES-EOS”
Code fiir das substellare Regime angewendet werden kann, mussten wir ihn zuerst an existierenden 3D
Simulationen testen und entschieden uns fiir einen M-Zwerg - kiihl und dicht genug, sodass Molekiile
eine wichtige Rolle spielen - da entsprechende 3D Modelle existieren.

In den M-Zwerg Testsimulationen mit dem "FLASH+ACES-E0S” Code fanden wir granulenar-
tige Strukturen bestehend aus warmen, weniger dichten Regionen in Aufwrtsbewegung und kalteren,
dichteren Regionen in Abwartsbewegung. The schichtweise gemittelten Temperatur-, Dichte- und
Druckprofile der "FLASH+ACES-EOS” Simulationen gind in guter Ubereinstimmung mit PHOENIX/1D
Modellen und das quadratische Mittel der z-Geschwindigkeitskomponenten von etwa 0,2km /s sind ver-
gleichbar mit Ergebnissen friherer Studien. All diese Ergebnisse zeigen, dass Konvektion korrekt
durch den FLASH Code mit integrierter ACES-EOS simuliert werden. Mit dem Abschluss dieses
Validisierungsprozesses ist es in zukiinftigen Arbeiten moglich, Simulationen fiir Objekte niedrigerer
Temperaturen und Massen durchzufiihren.
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Chapter 1

Introduction

1.1 Substellar objects

The term “substellar object” encompasses two conceptually different but physically closely
related classes of objects: brown dwarfs and extrasolar giant planets. Brown dwarfs form like
stars, but have masses smaller than around 0.075 solar masses (M), and never reach large
enough densities and pressures to mantain continuous thermonuclear reactions in their cores.
Despite a temporary deuterium and lithium burning phase, the lack of sustained thermonuclear
reactions— brown dwarfs have no stable hydrogen burning phase—results in no mechanism to
compensate for the surface radiative losses, making these objects cool down continuosly(e.g.,
Burrows et al., 2001). On the other hand, extrasolar giant planets form in a protoplanetary
disk. It is the difference in their formation mechanism that differenciates a brown dwarf from
a giant planet. A clasification based on the mass, that defines a planet as an object having a
mass smaller than 13 Jupiter masses (M;,,;) can be misleading since, as discussed by Baraffe
et al. (2010), there is an overlap in mass between the brown dwarfs and the extrasolar giant
planets, with evidence of a planet more massive than 13 M, and brown dwarfs with masses
smaller than 13 M,,,. In addition to observational evidences, stellar formation simulations also
succesfully form “planetary mass™ brown dwarfs (Whitworth and Stamatellos, 2006).

Due to their low masses and lack of thermonuclear burning in their cores, old ¢high sur-
face gravity) substellar objects have effective temperatures of roughly 2000K and lower. These
objects are mostly fully convective and have molecular atmospheres with complex chemical
processes and dust formation (Chabrier et al., 2004). Convection is the dominant energy trans-
port mechanism, except at the thin radiative outermost layer. It determines the temperature
structure of the object and is also responsible for the chemical mixing. In the majority of the
evolutionary and atmospheric models, the mixing length theory (MLT) approximation (e.g.,
Hansen and Kawaler, 1994) is used to account for convection. This approximation has two
main limitations. First, it uses an arbitrary parameter (a mean free path of a convective ele-
ment), which can only be tuned for the solar convection. And second, the MLT isa 1D approx-
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imation, so it cannot describe the complex 3D dynamics that occur in a convective system and
influence the surrounding non-convective layers. This 3D dynamics can have significant ef-
fects on the resulting spectra, since on the one hand, they efficiently mix the different chemical
species present—transporting them from deeper to shallower layers—and on the other hand,
the convective velocity fields as well as the temperature anomalies can distort the line pro-
files. Therefore, in order to construct more realistic atmospheric models, a 3D treatment of
convection is required.

There are several detailed 3D radiative-hydrodynamic simulations of solar convection (e.g.,
Stein and Nordlund, 1998), for which the results are in very good agreement with observa-
tions. For objects cooler that the sun, there are a series of 3D simulations by Ludwig (2006)
and Wende et al. (2009) for M-dwarfs, and 2D simulations by Freytag et al. (2010) for M and
brown dwarfs. The current work is an effort in the direction of having reliable 3D hydrody-
namic simulations of convection for substellar objects. But before we discuss in more detail
our approach to the problem, it is convenient to describe how convection instabilities arise
and to briefly explain the hydrodynamic equations that need to be considered in convective
simulations as well as the role played by the equation of state.

1.2 Convection

When we study the interiors and atmospheres of stars or substellar objects, we are dealing
with a stratified gas that has a given density, temperature and pressure gradient. Energy is
transported from the hotter core of the object to the surface, where radiative losses occur.
There are two main energy transport mechanisms: convection and radiation, and depending on
the density, pressure and temperature gradients and on the resulting properties of the gas (such
as opacity), one of the two energy transport mechanisms is dominant.

In the case of convection, the energy is transported by gas displacements. This occurs when
the stratification is unstable against convection. That is, when the environment surrounding
a rising parcel of gas is such that this parcel is further accelerated upwards as it rises. Con-
ceptually, the stability of the fluid against convection can be understood by analyzing what
happens if a parcel of fluid rises a distance Az: will it continue to rise, or will it sink towards
its original position? If the parcel continues to rise, the stratified gas is convectively unsta-
ble, but if it returns to the initial position, the stratified gas is stable against convection. The
answer to this question depends on the thermodynamical process that the parcel undergoes as
it moves. The parcel rises approximately addiabatically—without exchanging heat with its
surroundings—and expands reaching pressure equilibrium with the surrounding fluid almost
immediately. In this expansion process, the parcel’s density and temperature decrease. If the
new density is lower that that of the surrounding gas, the parcel is bouyant, and will continue



1.3 EULER EQUATIONS AND THE EQUATION OF STATE

to rise: in this case, the system is unstable against convection. On the other hand, if the new
density is higher than that of the surrounding fluid, the parcel will tend to sink, generating the
so-called buovancy oscillations.

This stability condition can be expressed in terms of density gradients, where the density
change experienced by the rising parcel is associated, to a first order approximation, to the
adiabatic gradient (dp/dz).s and to the environment’s density gradient (dp/dz)..,. The sys-
tem is unstable against convection if (dp/dz),q<(dp/ d2)eny. This criterion is is known as the
“Schwarzschild criterion”. For a more detailed description, see Mihalas and Mihalas (1984).

1.3 Euler equations and the equation of state

The dynamics of a compressible inviscid fluid are governed by a set of conservation equa-
tions: the conservation of mass, momentum and energy. These equations are derived in nu-
merous textbooks (e.g., Mihalas and Mihalas, 1984), and, therefore, are described only briefly
here.

The first equation, known as the equation of continuity, results from the principle of mass
conservation. The mass of any arbitrary volume can only change if there is a net mass flux
through the enclosing surface. Therefore, any change in density must be necessarily related to
mass flux convergence/divergence:

5
§+VHWD:Q (1.1)

where 2 is the fluid velocity.

The second equation, the conservation of momentum, results from Newton’s second law ap-
plied to an arbitrary volume of inviscid fluid. It is similar to the continuity equation above,
except that we must also consider forces acting on the volume, which modify the total momen-
tum. We can distinguish two types of forces: “body forces”, like gravity 7, which act on all
the fluid elements contained in the volume, and “surface forces™, like pressure F, that act on
the surface enclosing the volume. The resulting momentum equation is actually a system of 3
equations, one for each spatial dimension:

O(pid)
5

+ V- (pilil) + VP = pg (12)

Note that this is a particular case of the more general Navier-Stokes equations, which would
additionally include viscous forces.
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For the energy conservation equation, we consider only the specific internal energy F,; (see
Section 2.3.1 for details on how we calculate it) and the specific kinetic energy Ey, = »?/2.
The total energy associated to an arbitrary volume of fluid is the volume integral of pF.,, =
2(Eint + Fiin ). Changes in the total energy are a result of energy advection through the surface
of the control volume, or due to work done by the exterior on the control volume (as stated in
the first law of thermodynamics). The resulting energy conservation equation is:

B(oEror)

5 TV pBut Pl =pi-g (1.3)

Equations (1.1) through (1.3) are known as the Euler equations and can be used to calculate
the dynamics of inviscid and compressible fluids. Nevertheless, these five equations relate six
independent variables: density p , pressure P, temperature 7' and the three components of the
velocity vector 4. Therefore, an additional closure condition is required in order to solve the
system of equations.

This closure condition is the equation of state (EOS) that relates the various thermodynamic
variables of the fluid. Note that the complexity of this EOS will depend on the properties of the
fluid of interest. The most simple example is the ideal gas EOS, which assumes no interaction
between the components of the gas other than elastic collisions. However, for the tempera-
ture and density ranges encountered in very low-mass stars and substellar objects, chemical
processes—such as molecule formation—occur and play a significant role in the thermody-
namics of the system. Since the ideal gas EOS ignores all chemical processes, it is not suitable
for studying substellar objects. Therefore, we require a more complex and realistic EOS. We
use the “Astrophysical Chemical Equilibrium Solver” (ACES) EOS, which is a module of the
PHOENIX code (Hauschildt and Baron, 2011), and has been widely tested and successfully
used for numerous simulations of atmospheres of sub-stellar objects (e.g., Witte et al., 2011).
A more detailed description of this ACES-EOS can be found in Section 2.3.

1.4 Aim and outline of the thesis

The aim of the current thesis is to advance towards constructing reliable 3D hydrodynamic
simulations of convection in substellar objects. For that purpose, one of the main steps of this
work is to couple an adequate and detailed EOS to a general hydrodynamic code that solves
the above described Euler equations. We use the FL ASH hydrodynamic solver and couple
to it the “Astrophysical Chemical Equilibrium Solver” (ACES) EOS. This EOS can handle
temperatures as low as 100K, which covers almost the whole temperature range of substellar
objects. However, it is necessary to first set up an appropriate model and validate the “FLASH

10
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+ ACES-EOS” for a “known” case. This is what this study aims at. We do this for a test M-
dwarf, for which we can use results from simulations by Wende et al. (2009) and Freytag et al.
(2010} for comparison purposes. Once this is successfully tested, future studies can proceed to
use the same “FLASH+ACES-EQOS” code to model colder substellar objects.

The structure of this thesis is as follows: the current Chapter presents an introduction to the
hydrodynamic simulation of substellar objects and describes the main aim of this study. In
Chapter 2, we describe the modifications performed to the hydrodynamic solver in the FL ASH
code (Fryxell et al., 2000), and in particular the coupling and testing of the equation of state
(ACES-EOS) (Hauschildt and Baron, 2011). With the new ACES-EOS coupled to the FL ASH
code, we proceed in Chapter 3 to setup appropiate boundary and initial conditions for a test
simulation of an M-dwarf. In Chapter 4, the results of the hydrodynamic simulation are pre-
sented, analyzed and compared to other models, followed by several tests on the sensitivity of
the results to changes in the initial and boundary conditions, as well as on the domain size and
resolution. Finally, Chapter 5 summarizes the main conclusions that we obtained together with
an outlook for future studies.

11






Chapter 2

Adapting the FLASH code

We use the FL ASH code to simulate convection in the upper part of the convective layers
of sub-stellar objects. This code was partly developed by the DOE-supported ASC/Alliance
Center for Astrophysical Thermonuclear flashes at the University of Chicago (Fryxell et al.,
2000). There are several reasons why we have selected the FLASH code. One is the code’s
architecture: the FLASH code is modular, which allows users to configure initial and boundary
conditions, add new physical effects, and include their own equation of state. Another reason is
that the FLLASH code is parallelized: it uses the Message Passing Interface (MPT) which ensures
portability and good performance. And finally this code has been successtully tested for a wide
range of astrophysical problems, for example modeling supernovae (Couch et al., 2011), star
formation (Banerjee and Pudritz, 2007) and protoplanetary disks (de Val-Borro et al., 2007),
among many others. In the following sections briefly describe the most relevant features of the
code and of the modifications necessary for the simulation of convection in sub-stellar objects.

2.1 The FLASH grid

The FLASH code uses the PAR AMESH package (MacNeice et al., 2000), which is based
on a block-structured Adaptive Mesh Refinement (AMR) method. AMR can be very useful for
simulations that cover various spatial scales and where some small regions of the simulation
domain need to be studied with high resolution. But convection is an ubiquitous phenomenon
so AMR does not present any benefits for our particular simulations. Therefore, we will not de-
scribe here any of the AMR refinement and de-refinement processes and we will limit ourselves
to a brief description of the PARAMESH block structure and the code parallelization.

The simulation domain in the FLASH code is divided into blocks that are further divided
into interior grid cells (see Figure 2.1). Each cell is a physical volume element and has a set of
hydrodynamical and thermodynamical data asociated to it. For computational purposes, each
block is surrounded by guard cells. These guard cells either overlap with the interior cells
of neighboring blocks—and are therefore filled with the data from those neighboring interior

13
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cells—or are at the domain boundary—and are therefore filled according to the boundary con-
ditions. A more detailed description of how the boundary guard cells are filled can be found
in section 3.2. The “block + guard cell” decomposition of the domain allows for the hydrody-
namic calculations to be done independently for each block. PAR AMESH handles the block
distribution among available processors as well as the inter-processor and inter-block commu-
nications.

Simulation Domain 1 Block

Interior Cell

Guard Cell

Figure 2.1: The simulation domain in the left panel is divided into bloeks (framed by the blue lines). The right panel
shows how each block is divided into cells (also called interior cells) and is surrounded by guard cells (framed by
the red lines)

2.2 The Hydro-dynamical solver

The FLASH code solves the 3D Euler equations (see Section 1.3) using a directionally split
piccewise-parabolic method (PPM) solver (Colella and Woodward, 1984). The PPM method
implemented in FLASH is the direct Eulerian method and is a higher order version of the
Godunov method (Godunov, 1959). The Euler equations are a set of equations that determine
the evolution of the following conserved quantities: mass, momentum (X, v, z) and total energy.
The FLASH code is a grid based hydrodynamical code that stores, in each of its grid cells,
a cell averaged value of each of the conserved quantities. Therefore, the PPM method is a
finite-volume method since it deals with averaged values of the conserved quantities that are
associated with a grid cell and not with a specific point in space. In general, this method

14
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consists of three main steps: First, a “reconstruction step”, in which a piecewise function is
constructed from the averaged values of the conserved quantities in each of the cells at time
t,,. Then, during the ”solution step™, a numerical solution of the Riemann shock tube problem
is calculated at the cell interfaces to obtain the time-advanced fluxes at the cell boundaries.
Finally, these fluxes are used to solve a set of conservative differential equations to calculate
and update the zone averaged values of the conserved quantities to the next time step ¢,,41.

The “reconstruction step” in the PPM method can be a quite complex process. The Godunov
method uses a piecewise constant function in the reconstruction step, whereas the PPM method
uses a piecewise polynomial function to make the solution third order accurate. This piecewise
function is constructed using a fourth order polynomial and has to satisfy monotonicity con-
strains. A more detailed description of the construction of the piecewise parabolic function is
beyond the scope of this work and is given by Fryxell et al. (2000) and Colella and Woodward
(1984).

The "solution step” updates the zone-averaged values of the conserved quantities to the next
time step, solving conservative differential equations for each of the conserved quantities. To
solve these equations, it is necessary to know the fluxes of the conserved variables through
the zone interfaces. Unfortunately, it is not possible to obtain these fluxes directly from the
piecewise parabolic function. That is because, in general, there are two different values (one
for each cell), and because these flux values are asociated with ¢, (instead of ¢, 1 ) which would
make the solution numerically unstable. To overcome that problem, FLLASH uses a Riemann
solver to calculate the time-advanced fluxes at each cell’s interface.

The Riemann shock problem describes the evolution of two constant states that are separated
by a discontinuity. For the solution step, effective left and right states have to be constructed at
each cell’s interface. These effective left and right states could be obtained by using an average
value of the piecewise parabolic function, but this would vyield the same result as the constant
piecewise function, loosing all the effort invested in the construction of the piecewise polyno-
mial function. Instead, the PPM solver constructs these effective left and right hand states in a
more sophisticated way. Since all signals travel with a finite speed, not all the material within
two consecutive cells can influence its interface during a time step. To determine the domain
of dependence of the interface, backward characteristics with respect to time are traced from
the cell’s interface at ¢,,,1. Only the material within the characteristic and the interface can
have an influence during the time step. Figure 2.2 shows the characteristics for the Lagrangian
formulation (left panel) and compares it to the more complicated case of the Eulerian formu-
lation characteristics of a subsonic flow (middle panel) and supersonic flow (right panel) with
the fluid moving right. PPM does a correction of the left and right states to account for the
number of characteristics on each side of the interface. Further details are given by Colella and
Woodward (1984).

15
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Lagrangian formulation

tn+l

X X2 X432

Eulerian formulation

+ +
tn 1 " tn 1 ;
Sl il
S il
S S
1 1 ]
r 1 b} Fa 1
i 1 L [ |
i 1 " P 1
i || 11 K r.' i.
,."f ! l|\ (r'f Jrr !
z’+ OII L i ! !
¢ 1 i ; ! |
(;! rII “l +r(r (;_r)‘ _:r
A Fl A A
I 1
Xi-12 X112 X3 Xi-112 Xt X432
Subsonic flow Supersonic flow

Figure 2.2: Shows schematically the different possibilities for the characteristics in the Riemann shock tube prob-
lem. The upper panel corresponds to the simpler case of the Lagrangian formulation, where the characteristics are
symmetric at each side of the interface. The lower panel shows the characteristics for the Eulerian formulation.
This case is more complicated since the fluid is moving (in this case to the right) with respect to the grid. The lower

left panel corresponds to a subsonic flow, and the lower right panel to a supersonic flow.
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t=0 t>0

Density
Density

Xeg X

X Xy sz
Figure 2.3: Schematic density profile at different times for the Riemann shock tube problem. On the left panel at
=0 the profile depicts the two initial states {corresponding to the left and right states at a grid cell’s interface X3)

cach with a constant density. In the right panel, for ¢ = 0, the density profile exhibits the undisturbed left and right
initial states, a rarefaction wave (from X, to X.,), a contact discontinuity {(at X.3) and a shock wave (at X;).

Once the left and right hand states have been properly constructed, FLASH proceeds to
solve the Riemann’s problem at each cell’s interface. In Figure 2.3 we can see a scheme of the
general solution of the Riemann shock tube problem, with a wave (in this case a rarefaction)
traveling to the left, another wave (in this case a shock) traveling to the right, and between the
two waves, a contact discontinuity. For performance reasons, the solver in the FL ASH code
treats both left and right waves as shocks. As described by Fryxell et al. (2000), the equation
for a shock moving to the left is

P*— B4+ W(u* —w) =0, (2.1)
and for a shock moving to the right
P*— P+ Wi(u* — ) =0, (22)

where P is the pressure, « is the flow velocity and W is the wave speed. The superscript *
refers to the post-shock state and the subscripts | and , stand for the pre-shock left and right
states. For the specific case of the ideal gas equation of state, the wave velocity W is given by

i
e i (22

[&]

where -y is the adibatic index, the subscripts ; denotes the shock state and C; is the Lagrangian
sound speed velocity

Cs = (P)’spsps)% (24)

17
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A non-ideal gas equation of state has four adiabatic indexes as described by Chandrasekhar
(1957). The FLASH code uses a parameterization method developed by Colella and Glaz
(1985) that reduces the four adiabatic indexes to two. These two adiabatic indexes are variables
that depend on the thermodynamical data and can be calculated using the relations

dlnF
T = (alnp )S (2.5)
and
P

where p denotes density and ¢ internal energy. This adds two extra complications to the Rie-
mann solver. First there are now two adiabatic indexes instead of one, and second, these adia-
batic indexes can have different values for each of the cells. With these new considerations the
approximate nonlinear wave speed is (Fryxell et al., 2000),

P* 4 05(+; - 1)(P*+ P)

W2 — pu(P* — P — 1) (% —D)P* — (4 — )P, a7
with
Y= +2(y-1) (%) i: — i: (2.8)
where
['= %(1—‘1 + 1) 29
and
\ %(w%)_ (2.10)

Using equations (2.1) and (2.2), and the appropriate adiabatic indexes, it is possible to cal-
culate the fluxes through the interface. Further details of how this is carried out are described
by Toro (2009) for general cases, or by Colella and Woodward (1984) and by Colella and Glaz
(1985) for the specific PPM method. Once the fluxes are obtained, a set of conservative dif-
ferential equations are solved to calculate and update the cell averaged values of the conserved
quantities to the next time step.

All the above descriptions of the Hydro-dynamical solver correspond to a 1D problem. For
a 3D case a method called dimensional splitting or Strang splitting is used (Strang, 1968).
This method solves the 3D equations as a succession of 1D problems. A directional sweeping
is done in the order xyz-zyx, and a small multidimensional artificial viscosity is included to
provide a weak coupling between adjacent rows and columns (Fryxell et al., 2000).
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2.3 ACES EQUATION OF STATE

2.3 ACES equation of state

An equation of state (EOS) is a relation between the various thermodynamic variables of a
fluid. In the FLASH code, after the hydrodynamical solver calculates the density and energy
at ¢ = t,,1, the EOS is used to obtain the temperature, pressure and other thermodynamic
variables at ¢ = ¢,,11. As was described in the previous section, in the general case of a
non-ideal gas EOS, the adiabatic index I' plays a crucial role in the Riemann solver, so that
properties of the EOS not only determine the temperature and pressure values for a given
energy and density, but also determine the dynamics of the fluid.

The FLASH code provides two different EOS modules: an ideal gas EOS module and a
Helmholtz EOS module. Since we simulate convection in sub-stellar objects, we need an EOS
that handles in detail the chemical processes associated with low temperatures (in particular
molecule formation), i.e., that has a detailed treatment of the chemical composition. The ideal
gas EOS ignores the chemical processes in the gas and the Helmholtz EOS does not handle
temperatures below 10000 K, so it would be inadequate from a physical point of view to use
any of the EOS provided by FL.ASH for our specific problem. Hence, a crucial aspect of this
work is the coupling of an appropriate EOS to the FL ASH code.

We use the ” Astrophysical Chemical Equilibrium Solver” (ACES) EOS which is a module
of the PHOENIX code (Hauschildt and Baron, 2011). This ACES-EOS hasbeen widely tested
and successfully used for a wide range of simulations of atmospheres of sub-stellar objects
(e.g. Witte et al.,, 2011). The ACES-EOS works schematically as follows: given an elemental
composition (we are using solar composition) and a temperature and pressure, the EOS sweeps
over the possible configurations of molecules, ions and atoms that can result, and looks for
the configuration that minimizes the energy. Then, for that configuration, the ACES-EOS
calculates the corresponding density and internal energy. Details on both the theoretical and
numerical methods behind this EOS are described in detail by Smith and Missen (1982).

The above described procedure is repeated for various values of temperature and pressure to
generate a temperature-pressure ACES-EOS table. Thistable is then re-mapped into a density-
energy EOS table, since the hydrodynamical solver provides the EOS with the density and
internal energy values and expects the pressure and temperature values in return. We imple-
mented a new EOS sub-unit in the FLASH code that reads and stores the ACES-EQS table in
a way that the Hydro-dynamical solver can access all the required quantities.

The ACES-EOS is a module of the PHOENIX code that has been widely used in radiative
transfer simulations (Witte et al., 2011). Nevertheless, there are thermodynamical quantities
that the ACES-EOS provides specifically for our hydrodynamical simulations. These are the
internal energy and the entropy. We also needto calculate the adiabatic indexes I' and . In the
following we briefly describe how these thermo-dynamical quantities are obtained and tested.
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2.3.1 Internal energy and entropy calculation

The internal energy and the entropy can be calculated using the partition function 2 of the
gas. The following description is based on the Boltzmann statistics treatment of the gas and all
the equations we reproduce here are derived in detail by Mihalas and Mihalas (1984).

A system consisting of N particles inside a volume V' and with a total internal energy Ei;
can be described by a distribution function based on the assumption that the particles are dis-
tributed among cells with energy ¢;. The number of particles in the 4y, cell is given by the
occupation number 1;, and a set of ¢ occupation numbers {#; } has to satisty that the total num-
ber of particlesis N = 3, v; and the total internal energy is Ei,; = > . vs€;. In principle, there
are many sets of occupation numbers that satisfy the conditions on N and F; ;. Nevertheless
it can be shown that there is only one that maximizes the entropy of the system. The partition
function associated with this set of {#;} is defined as

Z = Zg@exp(—e%-/k’f), (2.11)

where 7' is the temperature of the system, % is the Boltzmann constant and g; is a weight
function associated with the degeneracy of the ¢, cell. The total internal energy of the system
can be obtained from the partition function as follows

8nZ
E.. = NkT® . 2.12
int ( 3{]—‘ )v ( )

The partition function # can be expressed as the product of the translational energy component
Zirans and electron energy componentZ,. as follows: Z = Zy.n;Z... Equation (2.12) can be
then rewritten as the sum of the translational energy term F.,. and the the electron energy
term E,.:

(2.13)

Eint = Etrans + Eele = %NkT + kaﬂ—'2 (%) .

or

The translational term Fi..; can be easily calculated from the temperature, whereas the elec-
tron energy term F, . needs the 7., values to be calculated. In order to obtain 7., the
ACES-EOS sweeps over all the molecules, atoms and ions that exist in the system to obtain the
(0InZ./ 8T, values that are required to calculate the internal energy of the system.
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The entropy 5 of the system can be calculated as well from the partition function

5 v (@rmkT)? olnZa
5 —|—1I1 (N) + In (T +R |:an31& +T ( )ﬂ:| , (214)

ar
and it is possible, again, to relate the first term to the translational energy component of the
partition function, and the second term to the electron energy component. Once again, both
terms can be calculated from the temperature and the 7. values calculated by the ACES-EOS.

S =Nk

2.3.2 T and ~ calculation

For a general equation of state, the FLASH code uses two of the four adiabatic indexes. One
is calculated internally by the FLASH code from the pressure P and internal energy Fiy; using
the relation (Fryxell et al., 2000)

y=1+ (2.15)

pEint ’

and the other, I', must be calculated by the equation of state. By definition (Chandrasekhar,
1957):
SinP
I' = (31np)g (2.16)

As described in the previous section, the ACES-EOS constructs an energy-density ACES-
EOS table, as required by the hydrodynamical solver in the FLASH code. It is from these
tabulated values that we have to calculate I' numerically. Expression (2.16) contains a partial
derivative at constant entropy which cannot be calculated for every single point in the ACES-
EOS table. Therefore, we need to derive a new expression for I' in terms of thermodynamic
derivatives at constant density and at constant internal energy.

P ar
o) e ()

~(5). o+ (55 ) B,
dp Eint OBy 2

and, replacing d5 in equation (2.17) with the following thermodynamic relation (see Mihalas
and Mihalas (1984))

We can write

2.17)

1 P
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we have

aF aF 1 r aF ar
(a—ﬁgdﬁ (%)p T (dEim - Ed") = (a—p)% do (—aam)p Wit (219

Regrouping the dEi,; and dp terms in the left hand side of equation 2.19 we can derive the

following relations
8P P [8F 8P
(5 ). 77 (55),- (55 ) 2
1 /8P oF
. (%)P _ <—8EM)P (2.21)

Multiplying equation (2.20) by P/p and using equation (2.21) in equation (2.20) to replace the
(8P/85), term we obtain:

and

2 BP) 1( opP ) P (3P>
222} -2 = | — . 2.22
P ( Op /g P \OEn P P Op B (222
Finally, reorganizing equation (2.22) and using the definition of [' given by equation (2.16), we
can express [ as
_p (8PN 1 0P
g () () .

The final expression for I' given by equation (2.23) only contains derivatives at fixed density
and fixed internal energy. These partial derivatives are easily calculated for all the points in
the energy-density table provided by the ACES-EOS. The calculated I' values are stored by the
ACES-EQOS sub-unit in the FL. ASH code, and are used by the hydrodynamical solver.

2.3.3 ACES-EQOS and I" Tests

Before we can use the ACES-EOS sub-unit that we implemented in the FLASH code, it is
important to perform some tests. First, we have to make sure that the energy-density ACES ta-
ble is constructed correctly and that the ACES-EOS sub-unit in the FLASH code is reading the
ACES-EOS table properly. For that purpose, we use the ACES-EOS module of the PHOENIX
code to calculate the internal energy and density for a given temperature and pressure. We then
use these obtained internal energy and density as input values in the FLASH code ACES-EOS
sub-unit, which reads the ACES-EOS table and determines the corresponding temperature and
pressure. The temperature and pressure values obtained correspond to the initial values used in
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the PHOENIX ACES-EOS module, and that proves that the ACES-EOS energy density table
is correctly constructed and properly read by the FL ASH code ACES-EOS sub-unit.

Second, we need to verify that the internal energy and the entropy values calculated by the
ACES-EOS are correct. One way to do this is to calculate the adiabatic index I" using expres-
sions (2.23) and (2.16). The [ calculated using equation (2.16) depends on the entropy value
but not on the internal energy value, whereas the I calculated using equation (2.23) depends on
the internal energy but not on the entropy. As mentioned before, the partial derivatives at fixed
density and fixed internal energy are easily calculated from the ACES-EQOS energy-density
table. To calculate the partial derivative at constant entropy required by equation (2.16), we
construct a density-entropy ACES table. Figure 2.4 shows that the values of ' calculated using
the two different expressions (2.23) and (2.16) agree reasonably well. Since one expression
only depends on the internal energy and the other depends only on the entropy, the fact that
both produce the same results suggests that the values of internal energy and entropy calculated
by the ACES-EQOS are correct.

One could argue that the above result is not conclusive enough since the expressions for
the calculation of the internal energy and the entropy both contain a term that depends on
the partition function (see equations (2.12) and (2.14)). Therefore, an error in the partition
function would result in an error in both the entropy and the internal energy and could result in
the calculated values of [ being both wrong but similar. So, as an example of how sensitive the
I values are to errors in the energy calculation, we construct an ACES-EOS table with wrong
internal energy values, that do not take into account the dissociation energy of the molecules.
We calculate again the adiabatic index I' using both expressions (2.12) and (2.14) and the
incorrect ACES-EOS table. We plot these [' values and compare them with those obtained
when using the correct ACES-EOS. In Figure 2.5 we can see that, when using the incorrect
ACES-EQOStable, the I' calculated using expression (2.12) differs greatly from the [ calculated
using the expression (2.14). It also differs from the values of I" calculated using the correct
ACES-EOQS table. This result further confirms that the values of the energy and the entropy
calculated by the ACES-EOS are correct.

Finally, the I'-values plotted in Figure 2.4 agree with those calculated by Dorfi (1998) for
a simpler Hydrogen-Helium equation of state. This agreement validates the internal energy
and entropy values calculated by the ACES-EOS. Additionally, Dorfi (1998) asserts that the
minimum in the I' plot between 2000K and 4000K is due to the dissociation of H; molecules.
This explains why there is a bump in the I'-values (see Figure 2.5) if the molecular dissociation
energy is not included in the ACES-EOS table.
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L8~ +  Gamma(Internal energy)
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Figure 2.4: Values of I" ealeulated using equation (2.23) (green dots) and equation (2.16) (blue dots) as a function
of temperature and for densities 8e — 9 << p < de — T.
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22— +  Gamma(internal enery) incorrect ACES | —
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Figure 2.5: Values of [" as a function of temperature and for densities 82 — 9 < p < 4e — 7, calculated using
two different ACES-EQS tables, one with correct values and one with incorrect values of the internal energy. The
Gamma values caleulated using the correet ACES-EQS are depicted by the green dots when we use equation (2.23)
and by the blue dots when we use equation (2.16). For the case of the incorrect ACES-EOQS table, the black dots
represent the [" caleulated using equation (2.23), and the red dots are obtained using equation (2.16).
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Chapter 3

Simulation setup

3.1 The simulation domain: A box in the star or a star in a
box?

As it often happens in Astrophysics, the typical spatial scales of our problem cover a wide
range. On one hand, since we want to simulate convection explicitly, the simulations should
ideally resolve even the smallest turbulent features. On the other hand, since the global circu-
lation of the gas can influence the local convective structure, we should ideally simulate the
whole object. The radius of a given sub-stellar object can be determined, for example, from
evolutionary models and, although convection happens on many spatial scales, it is common to
define a typical size of the convective cells. This typical size is of the order of the pressure scale
height H,. For an object in hydrostatic equilibrium, the pressure scale height can be obtained
from the pressure, density and gravity using (Kippenhahn and Weigert, 1991),

I, = G3.1)

P
ra

Here, we consider the case of an M-dwarf with effective temperature fi.y = 2800K and
gravity log(g) = 5 in cgs units and with a radius of around 1.15 x 10°%km. In the simula-
tion setup process, we use a PHOENIX/1D model (S. Witte, private communication) for these
given effective temperature and gravity. This model is calculated using the PHOENIX Code
(Hauschildt and Baron, 2011) and provides the temperature, pressure and density structure of
the outermost layers of such an object. From these PHOENIX/1D density and pressure struc-
tures, we can calculate the pressure scale height for a given altitude using equation (3.1). At
the top of the convective layer this pressure scale height is H, = 12.3km. At the bottom of
the PHOENIX/1D model, still within the convective layer and around 180km below its top, the
pressure scale height is H, = 49km.

These simple pressure scale height estimations clearly show that the radius of the object
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Simulation Domain: Boundary Conditions:
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Figure 3.1: The simulation domain consists of a3 dimensional box embedded in the upper part of the convective
region of the sub-stellar object. The size of the box depends on the effective temperature and surface gravity. The
boundary conditions are periodic in = and y and for the z direction specially modified boundary conditions were
constructed.

is four orders of magnitude larger than the size of the convective features we want to study.
Taking into account that we would need a resolution at least one order of magnitude smaller
than the typical size of the convective features to resolve them, and considering that we are
dealing with a 3D problem, it is not feasible to simulate global circulation and local convection
simultaneously. We focus therefore on the explicit simulation of convection and do a local 3D
simulation of a region in the upper part of the convective layer. This simulation box (shown
in the upper left corner of figure 3.1) is 400km x400km =< 180km, is several times bigger than
the estimated H,,, so that it can contain a reasonable number of convective cells. Its resolution
is 160 x 160 x 80 grid points, which corresponds to grid cells’ sizes of 2.5km in the = and %
directions and 2.25km in the z direction.
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Reflect Outflow Diode

"

V(GuardCell)= -V, (IntCell) W, (GuardCell)= V, (IntCell) V (GuardCell)= W, (IntCell)
or V,(GuardCell)=0

Figure 3.2: The tree panels show schematically how the data in the guard cells (framed by the red lines) is copied
from the interior cells (framed by the blue lines) for the tree different boundary conditions provided by the FLASH
code: the “reflect”, “diode” and “outflow” boundary conditions.

3.2 Boundary conditions

Once the size of the simulation box is established, we need to decide upon its physical
location within the object. It is important to mention here that the FLLASH code does not handle
radiative processes. Therefore, we can only simulate regions where radiation plays a negligible
role in the total energy transport, restricting the location of the simulation domain to the the
purely convective region. As aresult, the choice of the boundary conditions becomes a crucial
step in the simulation setup process. The obvious choice for the lateral boundary conditions
(= and ¥ in figure 3.1) is periodic boundaries. The choice of the upper and lower boundary
conditions is not as straight forward and requires some extra considerations. But before we
can discuss in detail these requirements, it is important to understand how the FLASH code
handles the boundary conditions.

LI

The boundary conditions provided by the FLASH code are “periodic”, “outflow”, “diode”
and “reflect”. As described in Section 2.1, the simulation domain in the FLASH code is divided
into blocks that are further subdivided into grid cells. Each block is surrounded by guard cells,
and if a block lies at a boundary, its boundary guard cells are filled according to the chosen
boundary condition. The values of velocity, density, pressure, temperature and energy in the
guard-cells are copied from the interior cells. Figure 3.2 shows schematically how that is done
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for each type of boundary condition. For the “reflect” boundary conditions the data is copied
in a mirror-like way. Additionally, the sign of the z-component of velocity at the guard cells
is changed. As a result no material leaves the simulation domain, and we can think of the
boundary as a “rigid” surface where material bounces back into the domain. In the “outflow”
and “diode” boundary conditions the data is copied in a way that allows outflows to freely
leave the domain, and the only difference between the two boundary types is in the velocity
treatment. The “outflow” boundary condition copies the velocity in the same way as the rest
of the data, allowing inflows as well as outflows. On the contrary, in the case of the “diode”
boundary condition, the velocity is either copied as the rest of the data or set to zero if it
is pointing inwards. As a result, the “diode” boundary condition does not allow inflows of
material.

The interiors of sub-stellar objects and very low-mass stars are mostly fully convective. So,
no matter how deep we place the lower boundary of our simulation, it will always be within
the convective region. The upper boundary is also within the convective region, because the
FLASH code does not handle radiation. So both the upper and lower boundaries have to allow
inflows and outflows of material. With that in mind, the FLASH “outflow” boundary condition
seems appropriate. Nevertheless, there is another requirement for the upper and lower bound-
aries that is related to the values of the temperature, density and pressure. If we look again at
how the “outflow” boundary condition fills the guard cells (figure 3.2), we can see that there
is no temperature, density or pressure gradient between the interior cell and the guard cells.
For an object in hydrostatic equilibrium, the effect of gravity is counteracted by the pressure
gradient. But since we have no pressure gradient in the “outflow” boundary condition it is
impossible to have equilibrium at the boundaries. The “diode” boundary condition has also
zero gradient at the boundaries, and the “reflect” boundary condition does not allow inflows
and outflows. Therefore none of the boundary conditions provided by the FLASH code ful-
fill the requirements of our simulation, and we must construct a customized set of boundary
conditions.

As described above, there are two main requirements for the boundary conditions: they must
allow inflows and outflows of material and they must provide some sort of gradient to counter-
act the gravity. To fulfill the first requirement, we use the “outflow™ treatment of the velocity
for the lower boundary and the “diode™ treatment of the velocity for the upper boundary. We
do not use the “outflow” treatment in the upper boundary because, due to the low densities,
it can result in unrealistic inflows of material which will be discussed later in this work. To
fulfill the second requirement, we fix the values of the density, internal energy, temperature
and pressure in the upper and lower boundaries. Fixing the value of the internal energy on the
lower boundary is also important for convection because it provides a source of energy. These
boundary conditions require values for the energy and density in the upper and lower bound-
aries. In order to get those values we need to resort to existing models, which will be described
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in the following section.

3.3 PHOENIX/1D atmosphere models

An isolated object in hydrostatic equilibrium with a given effective temperature and sur-
face gravity, has a unique temperature, density and pressure structure. We use PHOENIX/1D
models (provided by S. Witte, private communication) to get these 1D temperature, density
and pressure profiles and use them in the simulation setup process. These models are calcu-
lated using the PHOENIX Code (Hauschildt and Baron, 2011), which is a general purpose
atmosphere code that calculates the temperature structure of an object solving the radiative
transfer equation. In the 1D mode, it assumes the object is in hydrostatic equilibrium and for
the convective regions, it uses the mixing length theory approximation to calculate the energy
transport due to convection. The PHOENIX/1D models provide only a reference value for the
energy and density at the boundaries and an initial structure of the system. The hydrodynamics
of the system are the calculated by the FLASH code. We use the PHOENIX/1D models of an
object with effective temperature T,z = 2800K and surface gravity log(g) = 5 (Figure 3.3),
to determine the density, pressure and temperature values for the boundary conditions and use
the ACES-EOS table to calculate the corresponding internal energy value. The PHOENIX/1D
models together with the ACES-EOS are also used to construct a 3D set of initial conditions
for the internal energy, density, temperature and pressure.
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Figure 33: 1D temperature, density and pressure vertical profiles of an object with effective temperature Ty =
2800K and surface gravity log(g} = 5.
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Chapter 4

Results

4.1 Characterizing convection

One of the challenges that we encounter when simulating convection in substellar objects
is the verification of the results. Despite being a common phenomenon, direct observations
of convection are only possible for objects in our solar system. In the case of the solar sys-
tem planets (we are particularly interested in giant gaseous planets), the surface structure is
dominated by climatic events—due to the solar radiation and the resulting day-side night-side
temperature difference—and by rotation. But since we are simulating a section of an isolated
object—where we do not consider radiation or rotation—only solar convection can be used as
a reference for a qualitative comparison.

A more quantitative validation of the results has to be done using other numerical models. As
we described in Section 3.3, the PHOENIX/1D models provide 1D vertical structures that can
be used to test the mean vertical profiles resulting from our simulations. In addition to that, the
velocities and 3D hydrodynamic structures must be compared to other existing hydrodynamic
models. There are several detailed simulations of solar convection (e.g., Stein and Nordlund,
1998) that could be used to validate initial FLASH test simulations. However, one of the
main aims of this thesis is to adapt the FL. ASH code so it can be used to simulate convection
in substellar objects, and a crucial step in this process is the coupling of the ACES equation
of state to the FLASH code (see Section 2.3). This equation of state handles the chemical
processes that occur at low temperatures, and, therefore, has to be tested for objects with lower
effective temperatures than that of the sun.

We simulate convection locally, for an object with effective temperature 7.x=2%00 K and
surface gravity logig)=>5.0 (in cgs units). This object is an M-dwart with a mass of around
0.1 solar masses. This mass is slightly larger than the maximum mass for a substellar object
(0.075 solar masses). Nevertheless we choose these values of surface gravity and effective
temperature in order to be able to compare and validate our results with the 3D models by
Wende et al. (2009) and the 2D simulations by Freytag et al. (2010). Once the validation
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process is completed, it is straight forward to perform simulations for lower temperatures and
lower masses. The simulation domain consists of a 400 km »<400 km x 160 km box embedded
in the upper part of the convective region of the object, with a resolution of 160 x 160 x 80 grid
points, which corresponds to grid cells® sizes of 2.5 km in the =z and ¥ directions and 2.25 km
in the z direction. We use the FLLASH code coupled to the ACES-EOS, and use customized
boundary conditions in the z direction. The PHOENIX/1D model atmospheres are used to fix
the density and internal energy upper and lower boundary values, as well as to construct the
initial conditions.

In the following, we analyze the results of the above described simulation, looking for evi-
dences of convection in 2D horizontal and vertical slices of the domain. We then compare the
mean 1D vertical structures to the PHOENIX/1D models and test the dependence of the results
on the initial and boundary conditions. Based on this anal ysis, we are able to correct the lower
boundary conditions to improve the results, and finally run a higher resolution simulation.

4.1.1 Evidence of convection: looking for a granulation pattern.

In the inactive parts of the solar surface it is possible to see hot rising regions surrounded by
colder filaments of sinking material. This convective pattern, also known as solar granulation,
has been observed in detail, and simulated extensively (e.g., Stein and Nordlund, 1998). The
typical sizes of convective cells depend on the pressure scale height (see Section 3.1), and,
as the M-dwarf simulations by Ludwig (2006) show, convective patterns change for objects
with effective temperatures lower than that of the sun, and also change if instead of analyzing
convection in the surface, we consider deeper layers.

Since we are simulating an object that is cooler and has a bigger surface gravity than the
sun, we expect differences in the typical sizes of the convective cells with respect to the solar
granulation pattern. It is also important to recall that our simulations do not consider radiation
and are limited to the deeper, purely convective regions. As a result, every horizontal slice of
our simulation domain corresponds to a sub-surface layer.

Despite the above described differences, we expect some qualitative similarity between our
results and the solar granulation pattern. Indeed, in the z-velocity horizontal slices at three
different altitudes (left panels Figure 4.1), we can see that granule-like regions of material are
moving upwards and are surrounded by filament-like structures of sinking material. It is hard to
derive from this figure a typical size of the granule-like up-flows, but we find that the overall z-
velocity structure is similar to the granular structure observed in the Sun (Stein and Nordlund,
1998), and is also very similar to the “deeper-layer” slices of the M-dwarf simulations by
Ludwig (2006).

Furthermore, if we compare the horizontal z-velocity patterns with the corresponding tem-
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perature structures (right panels Figure 4.1) we see that, for = = 100km and 2 = 130km, the
rising granules are relatively warm and the sinking filaments are relatively cold, as expected in
a convective system. This correspondence between temperature and z-velocity structure is not
so clear for » = 50km. However, this is likely due to a boundary effect that is discussed in Sec-
tion 4.2.1. We can also note that the temperature variations at a given altitude (shown in Figure
4.1) are smaller compared to the total temperature range (from top to bottom of the domain)
and are therefore not visible in the 2D vertical temperature slice (see right panel Figure 4.2).

In addition to the evidence of convection observed in the horizontal slices at different alti-
tudes (Figure 4.1), we also see up-flows and down-flows of material consistent with convection
in a 2D vertical slice of the simulation domain (left panel Figure 4.2). All the z-velocity and
temperature slices of the simulation domain exhibit evidences of convection. Warmer regions
rise while colder regions sink. In the following Section we seek to quantify these results by
studying in more detail the correlation between the z-velocities and the main thermodynamical
quantities.

4.1.2 Up-flows, down-flows and their correlation with temperature and
density.

Convection is characterized by up-flows of relatively warm and less dense material and
down-flows of relatively cold and denser material. Therefore, it is the relative value of temper-
ature, density and pressure that is relevant for characterizing convective motions. We compute
these relative values, or anomalies, as the value at a point minus the average value at that alti-
tude. We then divide the result by the average value at that altitude, to express the anomalies
as a fraction of the horizontal average. To confirm that the up and down-flows observed in
Figure 4.2 correspond to convective motions, we plot in Figure 4.3 the temperature, density
and pressure anomalies overlapping the contours of the z-velocity field.

The strong temperature anomalies observed in the lower part of the domain (upper panel
Figure 4.3) are likely due to a boundary effect, since they exist only close to the lower boundary.
The density anomalies (middle panel Figure 4.3) are also stronger in the lower part of the
simulation domain. We treat these anomalies that are close to the lower boundary as pure
boundary effects (for further justification see Section 4.2.1), and concentrate instead on the
middle region of the simulation domain.

In this middle region (between » = 50km and 2z = 120km) there is a clear correspondence
between the warmer regions and the up-flows and the colder regions and the down-flows (upper
panel Figure 4.3). Despite the high variability in the density anomalies plots, we also see that
the up-flows of material have in average smaller densities and the down-flows of material have
larger densities (middle panel Figure 4.3). This correspondence between the warmer-less dense
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Figure 4.1: Horizontal slices of the z-veloeity structure (left panels) and the temperature structures (right panels)
at three different heights: z = 50km (upper panels), z = 100km (middle panels) and z = 130km (lower pan-
els), where = = Okm corresponds to the lower boundary and z = 180km corresponds the upper boundary. In
the z-velocity plots (left panels), the brighter regions correspond to up-flows of material and the darker filaments
correspond to down-flows. In the temperature plots (right panels) the brighter regions correspond to warnmer regions
and the darker regions correspond to colder regions. This structures correspond to simulations of an object with
Tix = 2800K andlog(y) = 5.0.
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Figure 4.2: Vertical 2D slices of z-velocity (left panel) and temperature (right panel) of an object with Ty = 2800K
and log(g) = 5.0. In the z-velocity profile (left panel) the brighter regions correspond to up-flows of material and
the darker filaments correspond to down-flows.

regions and the up-flows, and between the colder-denser regions and the down-flows is a strong
indication of convection. Additionally, in the idealized description of convection (see Section
1.2), we assumed that a parcel of gas rising through a convectively unstable region isin pressure
equilibrium with its surroundings. Consistent with this assumption, there is no visual evidence
of a correspondence between the pressure anomalies and the z-velocity (lower panel of Figure
4.3). The correspondence (or lack of correspondence) between the vertical velocity and the
temperature, density and pressure anomalies are all consistent with convective motions.

A correlation analysis between the different variables allows us to verify in a more rigorous
way the existence of convective motions. The upper panels of Figure 4.4, reveal that there is
a clear correlation between the temperature anomalies and the z-velocity, with warmer regions
going upwards and colder regions moving downwards. For the density anomalies, the corre-
lation with the z-velocity is less evident than for the temperature anomalies (middle panels in
Figure 4.4). There is a bigger spread in the data, but the linear regression shows consistently
for the three different altitudes that there is an anticorrelation, with the denser regions sinking
while the less dense regions rise. Finally, the pressure anomalies also seem to be slightly cor-
related to the z-velocity (lower panels Figure 4.4). The correlation coefficients (Table 4.1) and
the slope of the linear regressions corroborate the above described results.

4.1.3 Vertical profiles and comparison to PHOENIX /1D models

In the analysis of the z-velocity field and its correlation with temperature and pressure
anomalies, there is a strong evidence of convection (Figure 4.3), further supported by the hori-
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Figure 4.3: 2D vertical slices of the temperature (upper panel), density (middle panel) and pressure {lower panel)
anomalies, for an object with Tir = 2800 K and log(g) = 5.0. These anomalics are given as a percentage of the
horizontal average value. The isocontours of the z-velocity field are plotted overlapping the temperature, density
and pressure anomalies, with the isocontour of the zero z-velocity plotted in red, the negative z-velocities plotted in
black dashed lines and the positive z-velocities plotted in continuous black lines.
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slope (km/s) | intercept (km/s) | correlation coefficient

temp SOkm 1.015 0.017 0.559
dens 50km -0.234 0.017 -0.375

pres 50km 0.064 0.017 0.088

temp 100km 1.469 0.060 0.677
dens 100km -0.260 0.060 -0.223
pres 100km 0.099 0.060 0.177
temp 130km 1.277 0.184 0.765
dens 130km -0.152 0.183 -0.246
pres 130km 0.162 0.184 0.340

Table 4.1: Correlation coefficients and linear regression parameters corresponding to the seatter plots in Figure 4.4.

zontal slices of the simulation domain that show a granular structure qualitatively similar to that
observed in the solar surface (Figure 4.1). Nevertheless, in addition to these qualitative com-
parisons to the solar granulation pattern, we also need to verify that the simulated structures
are quantitatively correct. In order to do so, we make horizontal averages of temperature, den-
sity and pressure and compare these resulting FLASH 1D-averaged vertical profiles with the
PHOENIX/1D models (described in Section 3.3). In Figure 4.5 we can sce that there is a very
good general agreement between the two models. The FILASH density and pressure structures
reproduce very well the PHOENIX/1D models, which is an indication that the FLASH simu-
lation is in hydrostatic equilibrium (or at least very close to hydrostatic equilibrium). There is
also a very good agreement between the temperature structures of the two models. Since we
simulate a region where convection is the main energy transport mechanism, and considering
that the temperature structure is determined by the energy structure, we can conclude that the
convective energy transport is correctly reproduced in the F1. ASH model.

However, a zoom of the central region of the simulation domain (Figure 4.6) shows that
the FLASH temperature profile is slightly shifted with respect to the PHOENIX/1D model.
Nevertheless, this shift to higher temperatures does not change the temperature gradient, which
indicates that the energy transport, and therefore convection, is not responsible for this shift.
There are two possibilities to explain the temperature shift: one is that there is a systematic
error when we associate the temperature value to the center of the grid cell (when in fact the
temperature value is a grid-cell-average and is not necessarily associated with any particular
point in space, as described in Section 2.2). The second option is that the energy value that
we use for the lower boundary is also slightly shifted. This second option is analyzed and
discussed in Section 4.2.2.

Despite the slight shift in the FLASH temperature structure with respect to the PHOENIX/1D
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Figure 4.5: Temperature, density and pressure profiles for the 1D-averaged FLASH results (in red dots) and for the
PHOENDX/1D models (in black).
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(in red dots) and for the PHOENTX/1D models (in black).
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model, we can conclude that there is in general a very good agreement between the FLLASH
1D-averaged-profiles and the PHOENIX/1D models. It is important to keep in mind that
the PHOENIX/1D and the FL. ASH models calculate the resulting temperature, density and
pressure 1D structures in independent and complementary ways: the PHOENIX code solves
the non-grey radiative transfer equation and uses the mixing lenght theory approximation for
the convective energy transport and the FLASH code solves the hydrodynamic equations and
does not take into account radiation. Therefore, the good agreement between the two mod-
els observed in Figure 4.5 provides a good validation of the FLASH results at large depths.
However, despite the fact that the two models are calculated using different codes and by
solving a different set of equations, the two models are linked: the FLASH code uses the
PHOENIX/1D models to construct the boundary conditions and the initial conditions. We can
argue that the FL ASH results should be independent of the initial conditions and that the use of
PHOENIX/1D values in the lower boundary is only a tool to ensure that we simulate the same
object with the two different codes, so that we can later compare the results. These arguments
justifying the independence of the two models are tested in Section 4.2.

4.1.4 Vertical velocity analysis

From the above analysis of the results we conclude that the FL ASH simulations reproduce
correctly the temperature, density and pressure structures. We also observe a granular-like
pattern in the z-velocity field and a correlation between the z-velocities and the temperature and
density anomalies. However, in the upper part of the domain, the z-velocity is predominantly
positive and there are no signs of down-drafts (Figures 4.2 and 4.3). This behavior of the z-
velocity field is in contradiction with what we expect in a convective region. In such a region,
up-flows and down-flows of material coexist at any given altitude and one would expect the
average of the vertical velocity to be close to zero. Nevertheless, what we observe in the left
panel of Figure 4.7, is that the horizontal averages of the z-velocity are close to zero only in the
lower and middle regions of the domain, and that for an altitude » > 130km, these averaged
z-velocities show a steep increase. The same behavior is observed in the rms z-velocity (middle
panel in Figure 4.7), with reasonable values in the lower and middle parts of the domain and
an increase in the upper part. We attribute this unexpected behavior of the velocity in the upper
part of the domain to a boundary effect, and tests and a resulting improvement to the z-velocity
profiles are shown in sections 4.2 and 4.3, respectively. The reasonable rms z-velocity values
in the middle and lower part of the domain are of around 0.2 km/s, very similar to the values
obtained by Wende et al. (2009) and by Freytag et al. (2010).

Both the z-velocity horizontal averages and the rms z-velocities show an unexpected in-
crease in the upper part of the domain and a reasonable behavior in the middle and lower
regions. Nonetheless this reasonable behavior has to be tested further, because in a convective
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Figure 4.7: Horizontal averages of the z-velocity (left panel), rms z-velocity (middle panel) and horizontal average
of the z-component of the momentum (right panel) as a function of altitude.

region the up-flows and down-flows of material have different densities and, as a result, an
analysis of the z-velocities can be insufficient. To include density information, we calculate
the horizontal average of the z-momentum. In the right panel of Figure 4.7 we can see that
the horizontally-averaged z-momentum of the system is almost constant (but not zero) for the
middle and upper regions of the simulation domain. The fact that the average z-momentum is
not zero implies that there is a net flow of material, which is an indication that the simulations
are not in equilibrium. We know that the hydrostatic equilibrium of a system requires that,
for a given density, the effect of the gravity is counteracted by the pressure gradient. In our
simulations, the pressure gradient is determined by the density and energy values that we use
in the lower boundary condition (see section 4.2.2) and therefore, a positive net z-momentum
is consistent with an internal energy excess in the lower boundary.

4.2 Impact of the inital and boundary conditions

As seen in Figure 4.5, there is a very good agreement between the FLASH 1D-averaged-
profiles and the PHOENIX/1D models. Still, we have to take a few precautions when com-
paring the FLASH results to the PHOENIX/1D models. As described in Section 3.3, the
PHOENIX/1D models are used in the FLASH simulation setup procces, both to get the val-
ues of the energy and density at the boundaries and to generate the initial conditions. So it is
relevant to determine how much the FL. ASH results depend on this use of the PHOENIX/1D
models. In the following, we will refer to the simulation described in Section 4.1 as the default
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Figure 4.8: 1D-averaged FLASH temperature, density and pressure profiles. The green dashed lines represent
the constant profiles used as initial conditions and the green dots represent the resulting 1D-averaged FLASH
temperature, density and pressure profiles. The PHOENIX/1D models are again used as a reference (black lines).

simulation, and use it as a reference for this section’s initial-conditions, simulation-setup and
boundary-condition tests.

4.2.1 Initial conditions and different box sizes

As a first test, we construct a set of initial conditions with constant temperature, density,
internal energy and pressure values throughout the domain. To test if the results depend on
these “constant initial conditions”, we use them to run a simulation with the same runtime
parameters and boundary conditions values as the default simulation. In Figure 4.8 we see
that the resulting FLASH 1D-averaged-profiles fit very well the PHOENIX/1D models, despite
starting at constant values. The resulting temperature anomalies and z-velocity field are both
very similar to those of the defauit simulation (Figure 4.9). So we conclude that the FLASH
results are independent of the initial conditions.

As a second test, we construct a 100km high smaller box simulation (instead of the 1280km
high defaunit simulation). We locate this simulation box in the middle of the original domain
(see Figure 4.11). The internal energy and density values for the boundary conditions at the
new 2 location are again obtained using the PHOENIX/1D models. We calculate horizontal
averages and construct 1D-average profiles corresponding to the smaller box simulation. In
Figure 4.10 we find that the resulting FLASH 1D-averaged vertical profiles fit very well the
PHOENIX/1D models and the FLASH 1D-averaged vertical profiles corresponding to the de-
fault simulation. We can conclude that the 1D-averaged-profiles are independent of the size of
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panel) profiles for the 100km high setup (in blue dots). The 1D-averaged FLASH temperature, density and pressure
profiles (in red dots) and the PHOENIX/1D models (in black) are shown as a reference.

the simulation domain, at least for a decrease in hight of up to 40%.

For the smaller box simulation, we calculate the temperature, density and pressure anomalies
(as described in Section 4.1.2) and compare them to the anomalies of the default simulation.
Regarding the temperature anomalies and the z-velocities, we see in Figure 4.11 that there are
significant differences between the 2D slice plot of the temperature anomalies corresponding
to the smaller box simulation and the plot corresponding to the default simulation. On the
one hand, the temperature anomalies in the smalfler box simulation are less pronounced than
in the default simulation. The strongest temperature anomalies are again close to the lower
boundary, which supports our claim that these strong anomalies are boundary effects. On the
other hand, the velocities of the smaller box simulation have lower values than those of the
default simulation. This can be seen in more detail in Figure 4.12, where it is evident that the
z-velocity average, the rms z-velocities and the average z-momentum are smaller than for those
of the ““default simulation”. We suspect that both the temperature anomalies and the z-velocities
are smaller because the box height is not large enough for the typical convective structures to
develop undisturbed by boundary effects. Considering that the FLASH 1D-averaged vertical
profiles agree very well with the PHOENIX/1D models, we can take this discrepancy in the
2D slices as a warning: different convective velocities and structures can result in correct 1D
average profiles. Therefore, it is important to use a combination of analysis tools to determine
the validity of the simulations.
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4.2.2 Lower boundary internal energy

The lower boundary of the simulation domain is within the convective region and allows in-
flows and outflows of material. The values of the density and the internal energy are fixed at the
boundary using PHOENIX/1D models. We perform four simulations with 5% and 15% lower,
and 5% and 15% higher values of the internal energy in the lower boundary (compared to those
of the defauit simulation) to test how sensitive the simulations are to those changes. In Figure
4.13 we see that the FLASH 1D-averaged temperature profiles are shifted to higher tempera-
tures for higher values of the internal energy in the lower boundary and to lower temperatures
for smaller values of the internal energy. Higher densities and pressures are also observed for a
higher internal energy in the lower boundary and viceversa. We conclude that the 1D average
profiles are fairly sensitive to changes in the value of the internal energy in the lower boundary.
It is also important to note here, that the temperature profiles are shifted, but the temperature
gradient remains unchanged.

In Section 4.1.3, we found that the temperature profile for the defaunit simuilation is slightly
shifted to higher temperatures with respect to the PHOENIX/1D model (Figure 4.6). Addition-
ally, Figure 4.13 shows that a 5% decrease in the lower-boundary internal energy value results
in a temperature profile that is now shifted to lower values with respect to the PHOENIX/1D
model. From this result, we expect that a less pronounced decrease (<. 5%) of the internal
energy at the lower boundary should be sufficient to correct for the temperature shift observed
in the defaunit simulation.
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Besides the changes in the temperature, density and pressure profiles, the different energy
values in the lower boundary have a strong influence in the vertical velocity of the fluid. In the
middle panel of Figure 4.14 we see that both increasing or decreasing the internal energy value
in the lower boundary results in a significant increase in the rms z-velocities, particularly in the
problematic upper part of the domain, compared to those of the default simulation. The average
z-velocities (left panel Figure 4.14) and the z-momentum averages (right panel Figure 4.14)
show that an increase in the lower boundary internal energy causes a net up-flow, worsening
the problems that were observed for the default simulation. On the other hand, a decrease of
more than 5% of the lower boundary internal energy values results in a net down-flow. We can
conclude that all the four simulations with 5% and 15% lower, and 5% and 15% higher values
of the internal energy in the lower boundary produce non equilibrium situations. Nevertheless,
if we consider that the defauit simuiation presents a shift to higher values in the temperature
profile and a net downward flow, the effects of decreasing the internal energy value in the lower
boundary, should modify the results in the right direction.

4.3 Tuning the lower boundary internal energy.

Based on the conclusions from the above section we can estimate that a decrease of around
2% in the lower-boundary intermal energy value should be enough to correct the problems
encountered in the “default simulation™ (described in Sections4.1.1 and 4.1.3). Therefore, we

49



CHAPTER 4 RESULTS

T T T T
et T — —
4eHT |- —

= E i 3
i g g 2etl7T— b
=
i & = K 4
B 2 R T A
O o) = - .
o = =
— O B T o = =
& 5 B
d g-03 - m 5 2eHl7 : —
Rt T
- - F
L i L i el = o [== Emt+sn
, i £ |—-- Eint+5%
L= L LI - ..~ |— Eintdefault
L [ L i GerlT -—- Eint-5%
==-- Eint -15%
2 R I I 2 R I I B L
1] 50 100 150 0 50 100 150 1] 50 100 150
z (km) z (km) z (km)
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perform a test simulation using the setup of the defauit simulation but with a 2% smaller value
of the energy in the lower boundary. In the following, we will refer to this simulation as the
smalier energy simulation

A zoom of the central region of the simulation domain (Figure 4.15) shows that the FLLASH
temperature profile for the smaller energy simulation very well with the PHOENIX/1D model,
with a significant improvement with respect to the default simulation. The corresponding den-
sity and pressure profiles also agree better with the PHOENIX/1D model than those of the
default simulation.

In addition to that, the 2% smaller lower-boundary internal energy clearly improves the
z-velocity values. In the left panel of Figure 4.16 we can see that the z-velocity horizontal
averages are all close to zero. The steep increase observed in the upper part of the domain of
the defaunit simulation is no longer present. The rms z-velocities (middle panel Figure 4.16)
also improve: there is no increase in the upper region and, throughout the domain the resulting
rms z-velocity values (of around 0.2km/s) are in very good agreement with those obtained by
Wende et al. (2009) and by Freytag et al. (2010). Finally, the horizontal average z-momentum
is zero or close to zero for every altitude (right panel Figure 4.16), indicating that there isn’t a
significant net mass flux and that the system is in equilibrium.

From the analysis of the 1D-averaged profiles and the z-velocity and momentum averages,
we can conclude that a 2% decrease in the lower-boundary internal energy value, mends the
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Figure 4.15: Zoomed-in view of the temperature, density and pressure profiles for the 1D-averaged FLASH results
corresponding to a simulation with a 2% smaller internal energy value in the lower boundary (indigo dots). The
defaudt simdation FLASH 1D-averaged vertical profiles (red line) and the PHOENIX/1D models (black line) are
plotted as a reference.
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Figure 4.17: Vertical 2D slice of the z-velocity for a simulation with a 2% smaller value of the internal energy in
the lower boundary. the brighter regions correspond to up-flows of material and the darker filaments correspond to
down-flows.

problems encountered in the defaudt simulation. Therefore, it is relevant to repeat in detail all
the data analysis described in Sections 4.1.1 and 4.1.2, and see if the z-velocity structure and its
correlation with temperature, density and pressure anomalies improve in this new simulation.

The first improvement can be seen in a 2D vertical slice of the velocity structure, where up-
flows and down-flows of material consistent with convection are present throughout the whole
domain (Figure 4.17), even in the upper part of the simulation, which was not the case for
the default simulation. A second improvement is observable in the horizontal slices of the z-
velocities for three different altitudes (Figure 4.18), where the granule-like structure is clearer
and the contrast between up-flows and down-flows is stronger.

The 2D vertical slices of the temperature, density and pressure anomalies show again that
the warmer regions are on average less dense and are going upwards and that the colder regions
are on average denser and going downwards (Figure 4.19). These results are supported by the
linear regressions of the temperature and density anomalies against the vertical velocity (Figure
4.20). In particular at z = 100 km we see that, for the smaller energy simulation, there is a
stronger correlation between the warmer-less dense regions and the up-flows and the colder-
denser regions and the down-flows, compared to the default simulation. We also note that at
2 = 130 km (right column Figure 4.20) the linear regression of the data is shifted compared to
that of the defaunit simulation. This is due to the fact that in the smaller energy simulation the
average Z-velocity is close to zero throughout the domain.
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Figure 4.18: Horizontal slices of the z-velocity structure at three different heights: 2 = 50km (upper panels),

z = 100km (middle panels) and z = 130km (lower panels). The left column corresponds to the 2% smaller

lower-boundary-energy-value simulation and the right column corresponds to the defadt simudation. The brighter
regions cotrespond to up-flows of material and the darker filaments correspond to down-flows.
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Figure 4.19: 2D vertical slices of the temperature (upper panel), density (middle panel) and pressure anomalies
(lower panel), for the 2% smaller lower-boundary-energy-value simulation. These anomalies are given as a percent-
age of the horizontal average value. The isocontours of the z-velocity field are plotted overlapping the temperature,
density and pressure anomalies, with the isocontour of the zero z-velocity plotted in red, the negative z-velocities
plotted in black dashed lines and the positive z-velocities plotted in continuous black lines.

54



TUNING THE LOWER BEOUNDARY INTERNAL ENERGY.

Vz (km/s)

4.3
7. =50 km 7 =100 km 7 =130 km
L L — T T T
P R RN B S a1 '.'|.'-'.”| L
02 01 0 01 02 -02 -01 O 01 02 02 -01 O 01 0.2
Temp. anomalies (%o} Temp. enomalies (%) Temp. anomalies (%o)
E
=
]
=
1 | 1 |. | | 1 | 1 F 1 |h 1 1 | 1 | 1 .| 1
06 -03 0 03 06 -06 -03 O 03 06 -06 -03 0 0.3 0.6
Dens. anomalies (%o) Dens anomalies {%0) Dens anomalies(%o)
E
=
[}
=
L ] Ly ] ]
0 0.5

-0.5

0

0.5

-0.5

0

0.5

Press. anomalies (%0)

-0.5
Press. anomalies (%)

Press anomalies (%0)

Figure 4.20: Scatter plots of temperature (upper row), density (middle row) and pressure (lower row) anomalies,
against the vertical velocity at z = 50km (left colummn), z = 100km (middle column) and z = 130km (right
column) for the 2% smaller lower-boundary-energy-value simulation. Each point corresponds to an average of
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linear regression obtained for the defadt simulation data and is plotted as a reference.

35



CHAPTER 4 RESULTS

slope | intercept | correlation coefficient

temp 50km | 0.876 0.001 0.469
dens 50km | -0.251 0.001 -0.359

pres S0km 0.052 0.000 0.086

temp 100km | 1.649 0.005 0.738
dens 100km | -0.393 0.004 -0.382
pres 100km | 0.139 0.004 0.204
temp 130km | 0.738 0.010 0.612
dens 130km | -0.257 0.011 -0.300
pres 130km | 0.093 0.011 0.153

Table 4.2: Correlation coefficients and linear regression parameters corresponding to the scatter plots of the 2%
smaller lower-boundary-energy-value simulation in Figure 4.20.

4.4 Impact of the upper boundary internal energy.

In Section 4.2.2 we showed how the lower-boundary-value of the internal energy plays a
crucial role in the resulting temperature, density and pressure averaged profiles, as well as in
the z-velocity structures. Furthermore, in Section 4.3, we found that even a tiny 2% decrease
in the lower-boundary internal energy, resulted in significant changes, in particular in the z-
velocities of the system. Since in the simulation setup process we also use the PHOENIX/1D
models to determine the internal energy value in the upper boundary, it is relevant to study
how sensitive are the results to changes in these upper-boundary internal energy values. We
perform two test simulations, one with a 10% increase and one with a 10% decrease in the
upper-boundary internal energy values. We use as a reference the smaller energy simulation.

In Figure 4.21 we see that there is a very good general agreement between the FLASH
temperature, density and pressure structures with a modified upper-boundary internal energy
and the PHOENIX/1D models. This good agreement indicates that the upper-boundary internal
energy value has not a significant influence in the resulting temperature, density and pressure
structures. This is further confirmed by zooming in, both in a middle (Figure 4.22) and in an
upper (Figure 4.23) region of the simulation domain. There are some small shifts in the profiles
but those are negligible compared to those produced by changes in the lower-boundary-energy-
value. This result is very important, because it means that the resulting FLASH-1D averaged
temperature, density and pressure structures are not determined by the upper-boundary-energy-
value. Tt is therefore meaningful to use the PHOENIX/1D models as a tool to test the FLASH
simulations.

Besides the temperature, density and pressure profiles, it is relevant to study the effect of the
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bigger (dashed line) and 10% smaller (dotted line) upper-boundary-energy-values. The default simulation FLASH
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Figure 4.22: Middle region zoomed-in view of the temperature, density and pressure profiles for the 1D-averaged
FLASH results corresponding to a simulation with a 10% bigger (dashed line) and 10% smaller (dotted line)
upper-boundary-energy-values. The defalt simulation FLASH 1D-averaged vertical profiles (red dots), the smaller
energy simulation (indigo dots) and the PHOEND/1D models (black line) are plotted as a reference.
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Figure 4.23: Upper region zoomed-in view of the temperature, density and pressure profiles for the 1D-averaged
FLASH results corresponding to a simulation with a 10% bigger (dashed line) and 10% smaller (dotted line)
upper-boundary-energy-values. The defawds somidation FLASH 1D-averaged vertical profiles (red dots), the smaller
energy simulation (ndigo dots) and the PHOENIX/1D models (black line) are plotted as a reference.

upper-boundary-energy-value in the vertical velocity of the fluid. We can see in Figure 4.24,
that both a 10% increase or decrease in the upper-boundary-energy-value have little effect in
the averaged z-velocities, the rms z-velocities or in the z-momentum averages. This analy-

sis reinforces the evidence that changes in the upper-boundary-energy-value have a negligible
impact in the simulations.

4.5 Discussion: stability of the simulations

In all the previous Sections we have considered and analyzed snapshots of the system. We
use the temporal evolution of integral quantities, such as the total z-momentum or the total mass
of the system, to determine when the simulation has reached a stationary state. In Figures 4.26
and 4.25 we can distinguish three different stages. For £ < 1750s there are strong oscillations
of both the total mass and total zz-momentum. These oscillations decrease with time as the
system evolves to a state of equilibrium. From ¢ = 1750s to ¢ = 2500s the mass has a constant
value and the z-momentum has very small oscillations around zero, which indicates that there is
not net flux of mass through the boundaries. During this time interval we can consider that the
system is in a stationary state, and it is for time steps in this interval that we take the snapshots
used in the analysis. Once the system reaches a quasi-stable state, it should remain in it.

Nevertheless, starting at ¢ =~z 2500s there is an unexpected increase in the total momentum
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Figure 4.24: Horizontal averages of the z-velocity (left panel), rms z-velocity (middle panel) and horizontal average
of the z-component of the momentum (right panel) as a function of altitude for simulations with a 10% bigger
(dashed line) and 10% smaller (dotted line) upper-boundary-energy-values. The average z-velocity, rms velocity
and average z-momentum correspondign to the smaller energy simulation are plotted in indigo dots as a reference.

of the system while the total mass remains constant (see Figures 4.26 and 4.25). There is no
apparent reason to explain this sudden increase in the total z-momentum of the system, and
therefore, we suspect that some numerical instability is responsible for this behavior. This hy-
pothesis reinforced by the plots of the evolution of the total x and y-momentum (See Figure
4.27). Since we have periodic boundary conditions and no forcing in the x and v direction (as
described in section 3.2), we expect the x and y-momentum to be close to zero for symmetry
reasons. However, in Figure 4.27, it is evident that the total x and y-momentum are not zero,
and at £ ~ 2500 their absolute values start to increase, with the total x-momentum having
negative values and the total y-momentum having positive values. There is clearly no physi-
cal explanation, and therefore we believe that the system becomes unstable due to numerical
problems.

We described in Section 2.2 that the PPM hydrodynamical method uses an operator splitting
technique (Strang, 1968), so that the 3D equations are solved as a succession of 1D problems.
We believe that this splitting method could be responsible for introducing the non-physical
asymmetries observed for the total x and y-momentum (See Figure 4.27). A new “unsplit”
solver has been recently included in the FLASH code distribution and could be tested in a
future set of simulations, but this is beyond the scope of this work.
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Figure 4.25: Time evolution of the total mass of the system (indigo thin line). 1000 data points running averages
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Figure 4.26: Time evolution of the total z-momentum of the system (indigo thin line). 500 data points running
averages (around 50s) are also plotted (thick line).
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Figure 4.28: Zoomed-in view of the temperature, density and pressure profiles for the 1D-averaged FLASH results
corresponding to the smaller energy simulation with defadt resolution (indigo dots) and with a higher resolition

(orange dots). The defaudt simudation FLASH 1D-averaged vertical profiles (red dots) and the PHOENI/1D
models (black line) are plotted as a reference.

4.6 A higher resolution simulation

We described in Section 3.1 that convection occurs in many different lenght scales and that
in an ideal situation, one should resolve even the smallest turbulent structure. Nevertheless, due
to computational limitations, it is necessary to restrict the resolution. For all the simulations
presented above, the box size is 400 km =400 km x 160 km, with a resolution of 160 < 160 x 80,
which corresponds to a grid-cell size of 2.5 km (we will call this the default resolution). This
grid-cell size is presumeably larger than the smallest turbulent scales of the system. To test if
the unresolved structures have an influence in our results, we repeat in this Section the smaller
energy simulation, but with a higher resolution. For the same box size, we use 240 x 240 x 120
grid cells resulting in a grid-cell size of 1.5 km (we will call this the higher resolution).

A zoom of the central region of the simulation domain (Figure 4.28) shows that the FL ASH
temperature, density and pressure profiles are the same for the two different resolutions. In
addition to that, we can see no significant differences in the horizontal averaged z-velocities,
the rms z-velocities and the horizontal averaged z-momentum for the two resolutions (Figure
4.29). These results indicate that this newly resolved smaller scale turbulence does not seem
to have a significant effect on the mean temperature, density and pressure profiles, or in the
averaged z-velocities and z-momentum.

An improvement with the higher resolution is evident in the horizontal slices of the z-
velocities for three different altitudes (Figure 4.30), where more granule-like structures are
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Figure 4.29: Horizontal average of the z-velocty (left panel), rms z-velocity (middle panel) and horizontal average
of the z-component of the momentum (right panel) as a function of altitude for the smaller energy simuidation
with defaudt resolution (indigo dots) and with a higher resolution (orange dots). The default simulation (red dots)
and the 5% smaller lower-boundary-energy-value (dot-dashed line) average z-velocity, rms velocity and average
z-momentum are plotted as a reference.

visible and the contrast between up-flows and down-flows is stronger than for the defaunit reso-
lution. A more detailed structure can also be seen in the 2D vertical slices of the temperature,
density and pressure anomalies (Figure 4.31). In this figure we can see once again that the
warmer regions are on average less dense and are going upwards, and that the colder regions
are on average denser and going downwards. But the most significant improvement of the high
resolution simulation is that the strong temperature anomalies attributed to boundary effects
(see for example Figure 4.20) are no longer present. This leads to a significant increase in the
correlations in the lower part of the domain (Figure 4.32 and Table 4.3).

We conclude that an increase in the resolution has little effect on the mean vertical temper-
ature, density and pressure profiles of the simulation, as well as in the mean z-velocities, rms
z-velocities and mean z-momentum. This is an indication that the small scale turbulence —or
at least the newly resolved small scale turbulence in the higher resolution simulation— has
a negligible effect in the overal convective dynamics, in accordance with results of the solar
simulations by (Stein and Nordlund, 1998). The higher resolution has nevertheless a positive
impact, since the boundary effects on the temperature anomalies are no longer present in the
higher resolution simulation.
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Figure 4.30: Horizontal slices of the z-velocity structure at three different heights: z = 50km (upper panels), z =
100km (middle panels) and z = 130km (lower panels) for a 2% smaller lower-boundary-energy-value simulation.
The left column corresponds to the defaudt resoligion simiulation and the right column corresponds to the higher
resolution stmulation. The brighter regions correspond to up-flows of material and the darker filaments correspond
to down-tlows.
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Figure 431: 2D vertical slices of the temperature (upper panel), density (middle panel) and pressure anomalies
{(lower panel), for the kigher resolution simidation. These anomalies are given as a percentage of the horizontal
average value. The isocontours of the z-velocity field are plotted overlapping the temperature, density and pressure
anomalies, with the isocontour of the zero z-velocity plotted in red, the negative z-velocities plotted in black dashed
lines and the positive z-velocities plotted in continuous black lines.
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Figure 4.32: Scatter plots of temperature (upper row), density (middle row) and pressure (lower row) anomalies,
against the vertical velocity at z = 50km (left colummn), z = 100km (middle column) and z = 130km (right
column) for the higher resolution simudation. Each point corresponds to an average of 3 x 3 x 3 gird cells. The
orange line corresponds to a linear regression of the data. The indigo line corresponds to the linear regression

obtained for the defaudt resofution data and is plotted as a reference.
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slope | intercept | correlation coefficient

temp 50km | 1.573 0.005 0.756
dens 50km | -0.686 0.001 -0.524

pres 50km | 0.175 0.002 0.145

temp 100km | 1.780 0.011 0.712
dens 100km | -0.533 0.011 -0.296
pres 100km | 0.199 0.010 0.230
temp 130km | 1.734 0.028 0.696
dens 130km | -0.264 0.026 -0.309
pres 130km | 0219 0.026 0.296

Table 4.3: Correlation coefficients and linear regression parameters corresponding to the scatter plots in Figure
4.32.
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Chapter 5

Conclusions and outlook

Convection is the main energy transport mechanism in the interior of substellar objects and,
therefore, plays a crucial role in their structure. As a first step towards the explicit simulation
of convection in substellar objects, we coupled a state of the art equation of state (ACES-EOS)
to the hydrodynamic FLASH code. This ACES-EOS includes chemical processes such as
molecule formation, and can be used for simulations with temperatures as low as 100K. From
the thermodynamical variables calculated by the ACES-EOS, we derived the adiabatic index
I'. This adiabatic index plays a crucial role in the numerical solution of the hydrodynamic
equations and was successfully tested during the ACES-EOS coupling process: we found a
good agreement between the [' calculated from the ACES-EOS variables and values obtained
by Dorfi (1998). This good agreement is also a validation of the ACES-EOS internal energy
and entropy values, since those variables are explicitly required in the [' calculation.

Having achieved this coupling, we focused on testing the “FL ASH+ACES-EOS” code on a
more realistic problem. In order to do so, we simulated convection locally, for an object with
effective temperature T.5=2800 K and surface gravity log(g)=>5.0 (in cgs units). Our setup
consisted of a 400 km x400 km x 160 km box embedded in the upper part of the convective
region of the object. We fixed the internal energy and density values at the upper and lower
boundaries and used a PHOENIX/1D model atmosphere, both to determine those boundary
values and to construct initial conditions. The sensitivity of our simulations to these bound-
ary and initial conditions was tested. We found that the results are independent of the initial
conditions and of changes in the upper-boundary internal energy, whereas they are strongly
influenced by the lower-boundary internal energy. We also found that a 2% decrease in the
lower-boundary energy value, with respect to the one provided by the PHOENIX/1D model,
significantly improves the results of our hydrodynamic simulation.

To characterize and validate our results, we use both qualitative and quantitative methods. In
a first qualitative analysis of the z-velocity horizontal slices of the domain, we found granule-
like regions of material moving upwards, surrounded by filament-like structures of sinking
material. This overall z-velocity structure is similar to the granular structure observed in the

67



CHAPTER 5 CONCLUSIONS AND OUTLOOK

Sun (Stein and Nordlund, 1998), and is also very similar to the “deeper-layer” slices of the
M-dwarf simulations by Ludwig (2006). Additionally, the correlation analysis between ver-
tical velocity and temperature, density and pressure anomalies, shows that warmer and less
dense regions move upwards while colder denser regions move downwards, which is a clear
indication of convection.

For a more quantitative validation of the results, we compared FL. ASH 1D-averaged vertical
profiles with the PHOENIX/1D temperature, density and pressure profiles, and found a very
good general agreement between the two models. This indicates, on the one hand, that the
FLASH simulation is on average in hydrostatic equilibrium (or at least very close to hydrostatic
equilibrium), and, on the other hand, that convective energy transport is correctly calculated in
the FL ASH model, since the temperature structure is determined by the energy transport in the
system. As a final validation, we obtained rms z-velocities values of around 0.2km/s that are in
very good agreement with those obtained by Wende et al. (2009) and by Freytag et al. (2010).
Additionally, the horizontal average z-momentum is zero or close to zero for every altitude,
indicating that there isn’t a significant net mass flux and that the system is in equilibrium.

We encountered numerical boundary effects that arise as strong anomalies—unrelated to
convective motions—in the temperature and density fields, very close to the lower boundary.
However, these boundary effects disappear if we increase the resolution of the simulation,
while the convective-related features of the lower resolution simulation are maintained. We
found once again granule-like structures, with warmer and less dense regions moving upwards
and colder denser regions moving downwards. The FLASH mean profiles agree very well
with the PHOENIX/1D models and the rms z-velocity values are similar to those obtained by
Wende et al. (2009) and by Freytag et al. (2010). All these results indicate that convection
is correctly simulated by the FLLASH code coupled to the ACES-EOS. With this validation
process completed, it is possible in a future work to perform simulations for lower temperatures
and lower masses.

The above described results correspond to a stationary state of the system that occurs for
a finite time interval, which is long enough to cover several convective times scales (Freytag
et al., 2010). However, if we want to include processes with longer time scales, such as dust
formation, the long term stability of the system has to be revised. Our simulations indicate that
a numerical problem can be the cause for a long term instability that arises after 2500 seconds.
We suspect that the operator splitting technique (Strang, 1968) used by the PPM hydrodynamic
solver in the FLASH code could be responsible for introducing non-physical asymmetries and
suggest in the future to use the new “unsplit” solver that has been recently included in the
FLASH code distribution.

Furthermore, note that our simulations were limited to the purely convective layer, since
the FLASH code does not include radiative processes yet. However, very interesting hydrody-
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namic phenomena, such as convective overshooting or gravity waves, occur in the transition
region between the convective and the radiative layers. Therefore, a crucial next step would be
to include radiative processes in our simulation by adding a radiative transfer solver into the
FL ASH code. Thiswould enable us to simulate higher levels in the atmosphere and the result-
ing temperature, density, pressure and velocity structures could be used as input structures in
the PHOENIX/3D atmosphere code, to obtain spectra that could be compared to observations.
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